

Date: 26 Mar 2013

Page 1 of 15

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY(SUQIAN) CO.,LTD. NO.5 PUTUO MOUNT RD.,SUCHENG DISTRICT, SUQIAN,JIANGSU CHINA

The following sample(s) was/were submitted and identified on behalf of the clients es:

TO-251/252 (Green) package part (Include TO-251/251S/TO-252-2L/3L/5L); TO-251/262 (Green) pin lead part (Include TO-251/251S/TO-252-2L/3L/5L)

SGS Job No.:

SP13-006082 - SH

Composition:

Silvery Metal Part, Black Plastic Part

Date of Sample Received :

19 Mar 2013

Testing Period:

19 Mar 2013 - 22 Mar 2013

Test Requested:

Selected test(s) as requested by client.

Test Method : Test Results : Please refer to next page(s). Please refer to next page(s).

Signed for and on behalf of SGS-CSTC Ltd.

Test Report

No. SHAEC1304067907

Date: 26 Mar 2013

Page 2 of 15

Test Results:

Test Part Description:

Specimen No.	SGS Sample ID	Description
1	SHA13-040679.007	Black noumenon(mix all*)
2	SHA13-040679.008	Silvery pin part

Remarks:

- (1) 1 mg/kg = 1 ppm = 0.0001%
- (2) MDL = Method Detection Limit
- (3) ND = Not Detected (< MDL)
- (4) "-" = Not Regulated

RoHS Directive 2011/65/EU

Test Method: With reference to IEC 62321:2008

- (1) Determination of Cadmium by ICP-OES.
- (2) Determination of Lead by ICP-OES.
- (3) Determination of Mercury by ICP-OES.
- (4) Determination of Hexavalent Chromium by Colorimetric Method using UV-Vis.
- (5) Determination of PBBs / PBDEs content by GC-MS.

Test item(s)	Limit	Unit	MDL	007
Cadmium (Cd)	100	mg/kg	2	ND
Lead (Pb)	1000	mg/kg	2	ND
Mercury (Hg)	1000	mg/kg	2	ND
Hexavalent Chromium (Cr(VI))	1000	mg/kg	2	ND
Sum of P88s	1000	mg/kg	-	ND
Manabramobiphenyl	1.5	mg/kg	5	ND
Dibromobiphenyl	4	mg/kg	5	ND
Tribromobiphenyl	-	mg/kg	5	ND
Tetrabromobiphenyl	-	mg/kg	5	ND
Pentabromobiphenyl		mg/kg	5	ND
Hexabromobiplienyl	15	mg/kg	5	ND
Heptabromobiphenyl	-	mg/kg	5	ND
Octabromobiphenyl		mg/kg	5	ND
Nonabromobiphenyl	2	mg/kg	5	ND
Oecabromobiphenyl		mg/kg	5	ND
Sum of PBDEs	1000	mg/kg	•	ND

Test Report	No. SHAEC130406790	07	Date: 26	Mar 2013	Page 3 of 15
Test item(s)	Limit	Unit	MDL	007	
Monobramodiphenyl ether		mg/kg	5	ND	
Dibromodiphenyl ether		mg/kg	5	ND	
Tribromodiphenyl ether	-	mg/kg	5	ND	
Tetrabromodiphenyl ether		mg/kg	5	ND	
Pentabroniodiphenyl ether	:::	mg/kg	5	ND	
Hexabromodiplienyl ether	:•	mg/kg	5	ND	
Heptabromodiphenyl ether		mg/kg	5	ND	
Octabromod phenyl ether		mg/kg	5	ND	
Nonabromodiphenyl ether	-	mg/kg	5	ND	
Decabromodiphenyl ether		mg/kg	5	ND	

Notes:

(1) The maximum permissible limit is qualed from directive 2011/65/EU, Annex II

RoHS Directive 2011/65/EU

Test Method: With reference to IEC 62321:2008

- (1) Determination of Cadmium by ICP-OES.
- (2) Determination of Lead by ICP-OES.
- (3) Determination of Mercury by ICP-OES.
- (4) Determination of Hexavalent Chromium by Spot test / Colorimetric Method using UV-Vis.
- (5) Determination of PBBs / PBDEs by GC-MS.

Limit	Unit	MDL	008
100	mg/kg	2	ND
1000	mg/kg	2	9
1000	mg/kg	2	ND
	-	♦	Negative
1000	mg/kg	-	ND
	mg/kg	5	ND
10	mg/kg	5	ND
-	mg/kg	5	ND
-	mg/kg	5	ND
	mg/kg	5	ND
	mg/kg	5	ND
-	mg/kg	5	ND
	mg/kg	5	ND
-	mg/kg	5	ND
-	mg/kg	5	ND
	100	100 mg/lg 1000 mg/lg 1000 mg/lg - 1000 mg/lg - mg/lg	100 mg/kg 2 1000 mg/kg 2 1000 mg/kg 2 ◇ 1000 mg/kg mg/kg 5 - mg/kg 5

Test Report	No. SHAEC130406790	07	Date: 26	Mar 2013	Page 4 of 15
Test item(s)	<u>Limit</u>	<u>Unit</u>	MDL	008	
Sum of PBDEs	1000	mg/lag	-	ND	
Monobromodiphenyl ether	-	mg/lag	5	ND	
Dibromodiphenyl ether	-	mg/lag	5	ND	
Tribromodiphenyl ether	S. **	mg/lag	5	ND	
Tetrabromodiphenyl ether	3.5	mg/lag	5	ND	
Pentabron odiphenyl ether		mg/lag	5	ND	
Hexabromodiplisenyl ether		mg/lag	5	ND	
Heptabromodiphenyl ether	E ≟	mg/lag	5	ND	
Octabromodiphenyl ether		mg/lag	5	ND	
Nonabromodiphenyl ether	<u>;</u>	mg/lag	5	ND	
Oecabromodiphenyl ether	67	mg/kg	5	ND	

Notes:

- (1) The maximum permissible limit is quoted from directive 2011/65/EU, Annex II
- (2) \$Spot-test:

Negative = Absence of Cr(VI) coating. Positive = Presence of Cr(VI) coating:

(The tested sample should be further verified by boiling-water-extraction method if the spot test result is Negative or cannot be confirmed.)

◇Boiling-water-extraction:

Negative = Absence of Cr(VI) coating

Positive = Presence of Cr(VI) coating: the detected concentration in boiling-water-extraction solution is equal or greater than 0.02 mg/kg with 50 cm² sample surface area.

Information on storage conditions and production date of the tested sample is unavailable and thus Cr(VI) results represent status of the sample at the time of testing.

Halogen

Test Method: With reference to EN 14582: 2007, analysis was performed by Ion Chromatograph (IC).

Test rem(s)	Unit	MDL	<u>007</u>
Fluorine (F)	mg/lag	50	ND
Chlorine (CI)	mg/lag	50	ND
Bromine (Br)	mg/lag	50	ND
lodine (I)	mg/lag	50	ND

Element(s)

Test Method: With reference to US EPA Method 3052:1996, analysis was performed by ICP-OES.

Test Report Date: 26 Mar 2013 No. SHAEC1304067907 Page 5 of 15 Test Hem(s) Unit MDL 007 mg/kg 10 ND Antimony (Sb) Phospitorus (P) 127 mg/kg 20

Phthalates

Test Method: With reference to EN14372: 2004, analysis was performed by GC-MS.

Test Hem(s)	Unit	MDL	<u>007</u>
Dibutyl Phthalate (DBP)	%	0.003	ND
Benzylbutyl Phthalate (88P)	%	0.003	ND
Bis-(2-ethythexyl) Phthalate (DEHP)	%	0.003	ND
Diisononyl Phthalate (DINP)	%	0.010	ND
Oi-n-octyl Phthalate (DNOP)	%	0.003	ND
Diisodecyl Phthalate (DIDP)	%	0.010	ND
Di-n-hexyl Phthalate (DnHp)	%	0.003	ND
Diisobutyl Phthalate (DIBP)	%	0.003	ND

Notes :

- (1) DBP,BBP,DEHP Reference information: Entry 51 of Regulation (EC) No 552/2009 amending Annex XVII of REACH Regulation (EC) No 1907/2006 (previously restricted under Directive 2005/84/EC):
 - i) Shall not be used as substances or in mixtures, in concentrations greater than 0.1 % by weight of the plasticised material, in toys and childcare articles.
 - ii) Toys and childcare articles containing these phthalates in a concentration greater than 0.1 % by weight of the plasticised material shall not be placed on the market.

Please refer to Regulation (EC) No 552/2009 to get more detail information DINP, DNOP, DIDP Reference information: Entry 52 of Regulation (EC) No 552/2009 amending Annex XVII of REACH Regulation (EC) No 1907/2006 (previously restricted under Directive 2005/84/EC).

- i) Shall not be used as substances or in mixtures, in concentrations greater than 0.1 % by weight of the plasticised material, in toys and childcare articles which can be placed in the mouth by children.
- ii) Such toys and childcare articles containing these phthalates in a concentration greater than 0.1 % by weight of the plasticised material shall not be placed on the market.

Please refer to Regulation (EC) No 552/2009 to get more detail information

Hexabroniocyclododecane (HBCDD)

Test Method: With reference to US EPA 3550C: 2007, analysis was performed by GC-MS.

Test Report

No. SHAEC1304067907

Date: 26 Mar 2013

Page 6 of 15

 Test Item(s)
 Unit
 MDL
 007

 Hexabromocydododelecane (HBCDD)
 mg/kg
 10
 ND

PFOS (Perfluorooctane Sulfonates) and PFOA (Perfluorooctanoic Acid)

Test Method: With reference to US EPA 3550C: 2007, analysis was performed by HPI,C-MS.

Test Item(s)	Limit	Unit	MDL	QQ7
Perfluoiooctaine Sulfonates (PFOS) and related	1000	лıg/kg	10	ND
Acid.Metal Salt and Amide				
Perfluoroctanoic Acid (PFOA)		nıg/kg	10	ND

Notes:

Max. limit specified by commission regulation (EU) No. 757/2010 amending regulation (EC) No 850/2004.

Polycyclic aromatic hydrocarbons (PAH)

Test Method: With reference to ZEK 01.4-08 of German ZLS and its amendments, analysis was performed by GC-MS.

J'est litem(s)	Unit	MDL	007
Sum of 18 PAH	mg/kg	-	ND
Naghthalene(NAP)	mg/kg	0.2	ND
Ameraphthylene(ANY)	mg/kg	0.2	ND
Acenaphthene(ANA)	mg/kg	0.2	ND
Fluorene(FLU)	mg/kg	0.2	ND
Phenantirene(PHE)	mg/kg	0.2	ND
Arthracene(ANT)	mg/kg	0.2	ND
Fluoranthene(FLT)	mg/kg	0.2	ND
Pyrene(PYR)	mg/kg	0.2	ND
Benzo(a)anthracene(BaA)	mg/kg	0.2	ND
Chrysene(CHR)	mg/kg	0.2	ND
Benzo(b) fluoranthene (BbF) and	mg/kg	0.4	ND
Benzo(j)fluoranthene(BjF)			
Benzo(k)fluoranthene(BkF)	mg/kg	0.2	ND
Benzo(a)pyrene(BaP)	mg/kg	0.2	ND
Benzo(e)pyrene(BeF)	nıg/kg	0.2	ND
Indeno(1.2.3-c,0)pyrene(IPY)	mg/kg	0.2	ND

Test Report	t
-------------	---

Date: 26 Mar 2013

Page 7 of 15

 Test Item(s)
 Unit
 MDL
 007

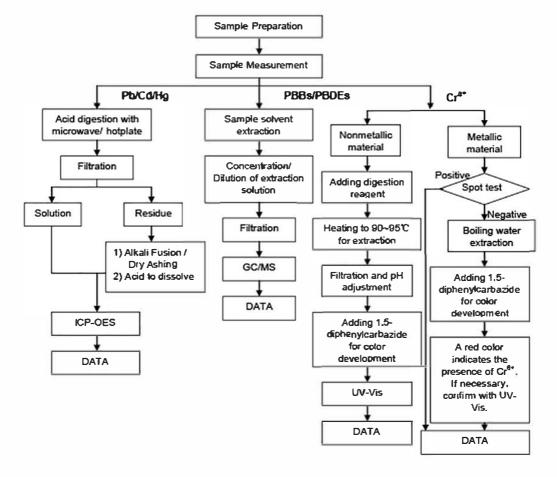
 Dibenza(a,h)anthracene(DBA)
 mg/kg
 0.2
 ND

 Benzo(g,h,i)perylene(BPE)
 mg/kg
 0.2
 ND

ZEK DL 4-0R: Restraining maximum values for products.

Par ameter	Cat enory 1	Cat eg or y 2	Ey to go ted
	Material indented to be aut in 1 hemout hor material for toyawith normal skin contact for children aged < 36 months	notin Cludedin Category 1, with predictable contact with the skin longer	Materials those are not included in Category 1 or 2, with predictable skin contact up to 30 s (short-term skin contact)).
Benzola)pyr ene(mg/kg)	<0.2™	1	20
Sum of 18 PAH (mg/kg f	<0.2™	10	200

Hotes:

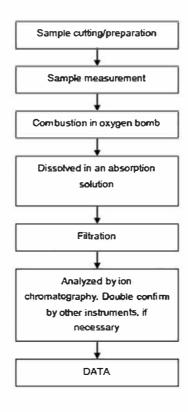

- A = Only PAH substances > 0.2 maykg are taken into account while calculating the sum of PAHs A = In case that the maximum values exceed the limits of category 1, but are within the limits of category 2, one may confirm the suitability of the tested material which is indepted to be put in the mouth by additional specific migration tests of PAH components based on BIN EM.
- the mouth by additional specific migration tests of PAH componentsbased on BIN EM 1186ff/EM 3180 and §64 LF GB 80, 20-1. The conclusion or the myration test results must be made based on feet law criteria.

Remark: 'The sample(s) was/were analyzed on behalf of the applicant as mixing sample in one testing. The above result(s) was/were only given as the informality value and only for reference.

ATTACHMENTS

RoHS Testing Flow Chart

- 1) Name of the person who made testing: Jan Shi/Yoyo Wang/Allen Xiao/Gary Xu
- 2) Name of the person in charge of testing: Jeff Zhang/George Xu/ Linda Li
- These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁸* and PBBs/PBDEs test method excluded)

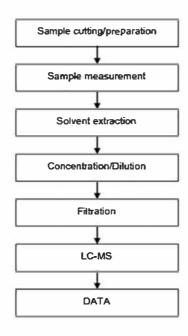


Date: 26 Mar 2013

Page 9 of 15

Halogen Testing Flow Chart

- 1) Name of the person who made testing: Sis@y Yin
- 2) Name of the person in charge of testing: Linda Li

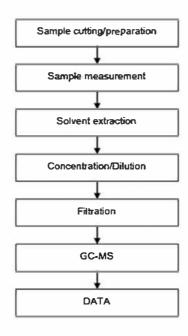


Date: 26 Mar 2013

Page 10 of 15

PFOS/PFOA Testing Flow Chart

- 1) Name of the person who made testing: Judy Li
- 2) Name of the person in charge of testing: Myra Ma

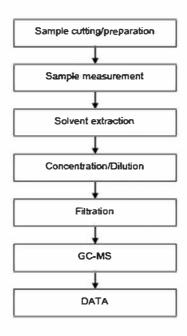


Date: 26 Mar 2013

Page 11 of 15

Phthalates Testing Flow Chart

- 1) Name of the person who made testing: Elyn Yao
- 2) Name of the person in charge of testing: Myra Ma

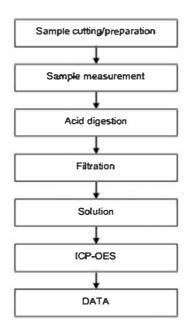


Date: 26 Mar 2013

Page 12 of 15

PAH Testing Flow Chart

- 1) Name of the person who made testing: Lisa Duan
- 2) Name of the person in charge of testing: Jessie Huang

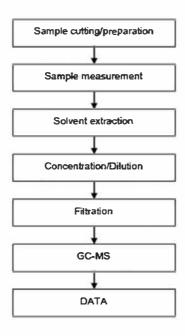


Date: 26 Mar 2013

Page 13 of 15

Elements Testing Flow Chart

- 1) Name of the person who made testing: Yoyo Wang/ Jan Shi
- 2) Name of the person in charge of testing: Jeff Zhang



Date: 26 Mar 2013

Page 14 of 15

HBCDD Testing Flow Chart

- 1) Name of the person who made testing: Gary Xu
- 2) Name of the person in charge of testing: Jessy Huang

Sample photo:

SGS authenticate the photo on original report only

*** End of Report ***